D.J. Braun, M. Goldfarb, Elimination of Constrained Drift in the Numerical Simulation of Constrained Dynamical Systems, Computer Methods in Applied Mechanics and Engineering, vol. 198, no. 37-40, pp. 3151-3160, 2009.
By means of the Udwadia–Kalaba approach we propose an explicit equation of constrained motion developed to simulate constrained dynamical systems without error accumulation due to constraint drift. The basic idea is to embed a small virtual force and a small virtual impulse to the equation of motion, in order to avoid the drift typically experienced in constrained multibody simulations. The embedded correction terms are selected to minimally alter the dynamics in an acceleration and kinetic energy norm sense. The formulation allows one to use a standard ODE solver, avoiding the need for iterative constraint stabilization. The equation is based on the pseudoinverse of a constraint matrix such that it can be used under redundant constraints and kinematic singularities. The proposed method takes into account the finite word-length of the computational environment, and also accommodates possibly inconsistent initial conditions.